Theoretical study of Au_8O_2 , $Au_8O_2^+$ and $Au_8O_2^-$ nanoclusters

Abstract

The present work deals with the preliminary theoretical study of Au₈ clusters (neutral, cationic, anionic) and oxygen molecule separately and then the interaction of oxygen molecule with Au₈ clusters (neutral, cationic, anionic) using different DFT functionals. It is evident from the results that the formation of Au₈O₂, anionic complex having one unpaired electron is more favorable as compared to its cationic or neutral counterparts. Furthermore, frequency calculations of O-O bond show that vibrational frequency is least for Au₈O₂, anionic complex having one unpaired electron. It reveals that there is effective activation of oxygen and thus it can be very useful in CO oxidation reaction which is a very important reaction for reducing environmental pollution.

Keywords: Gold Nanoclusters, Density Functional Theory, CO Oxidation. **Introduction**

Several interesting phenomena involving nanomaterials have been mentioned during the past decade due to their unique structural, mechanical, and electrical properties. The increasing availability of extremely sophisticated experimental techniques coupled with the highquality electronic structure calculation programs has improved the understanding of the complex nature of these nanomaterials and properties. One of the most recent observations is that of gold based catalysis at the nanoscale. It is well known that while the bulk phase of the gold is inert, the gold nanoparticles of size around 1-5 nm has been found to be an excellent catalyst for many organic and inorganic reactions. Among these chemical reactions, the interesting catalytic reactions are the oxidation of carbon monoxide at 200 K and the activation of oxygen molecules. The adsorption of atoms or molecules on small metal clusters in the gas phase is an active area of experimental and theoretical investigation.

Although bulk phase Gold has long been known as the chemically inert metal, it was the report of Haruta et al.¹ that showed that nanosized gold clusters can be catalytically active. A wide variety of chemical reactions, e.g. CO oxidation², epoxidation^{3, 4}, C-C bond formation⁵, water gas shift⁶ and selective hydrogenation/reduction⁷ are reported to be catalysed by supported gold clusters. Especially, the most notable is the environmentally important reaction of oxidation of CO to CO₂ at temperatures far below room temperature.

Review of Literature

Whetten's group⁸ who studied O_2 adsorption on Au_n^- clusters found that Au_n^- clusters with odd *n* do not adsorb O_2 and that Au_n^- clusters with even *n* will only adsorb one O_2^- molecule. They postulated that the adsorption of an O_2^- molecule requires the formation of a chemisorbed $O_2^$ species; this charge transfer occurs readily only when the Au_n^- cluster has an unpaired electron. Since an Au atom has 11 valence electrons, the cluster Au_n^- has an unpaired electron only when *n* is even. Thus, only anionic clusters with even *n* will adsorb O_2^- . The interest in oxygen chemistry on Au_n clusters is increased by the recent finding that very small Au clusters are good oxidation catalysts².

The direct vapor-phase epoxidation of propene to propene oxide in the presence of molecular oxygen and hydrogen over gold catalysts supported on Ti-incorporated silica materials prepared by different methods have been reported by A.K. Sinha et al.³

The properties of the alkali metal clusters have been investigated by K. R. S. Chandrakumar's group^{9, 10} using ab initio electronic structure calculations, with special reference to their structural evolution and the size dependence of several reactivity descriptors.

Devendra Kumar Mahawar Assistant Professor,

Deptt. of Chemistry, University of Rajasthan, Jaipur, Rajasthan, India

Manu Sikarwar

Associate Professor, Deptt. of Chemistry, Govt. P.G. College, Tonk, Rajasthan, India

R.K. Gunsaria

Associate Professor Deptt. of Chemistry, University of Rajasthan, Jaipur, Rajasthan, India

E: ISSN NO.: 2455-0817

In the past two decades, high attention has been given for the direct synthesis of H_2O_2 from H_2 and O_2 with Pd and Au-based catalysts.¹¹⁻¹⁵ Olivera et al.¹⁴ predicted that gold would be a better catalyst for the direct synthesis of H_2O_2 than Pd, Pt, and Ag. Subsequent experiments did show that highly dispersed Au nanoparticles are very selective and active for the synthesis reaction.^{15, 16} Theoretical investigation of the formation of hydrogen peroxide from H₂ and O₂ over anionic gold clusters Au_n (n = 1-4) has been proposed by Fang Wang et al.¹⁷

Structure, bonding, and linear optical properties of a series of silver and gold nanorod clusters whose structures are of cigar-type has been performed by Meng-Sheng Liao et al.¹⁸ using DFT/TDDFT.

Greg Mills¹⁹ used density functional theory to examine the binding of O_2 to Au_n and Au_n clusters (n= 2–5).

Theoretical investigation on the structure and electronic properties of hydrogen- and alkali-metaldoped gold clusters and their interaction with CO, an enhanced reactivity of hydrogen-doped gold clusters has been reported recently by Naresh K. Jena et al.²⁰

Ab initio studies on the electronic structure and properties of Aluminum hydrides viz., *closo* (AI_nH_{n+2}) , *nido* (AI_nH_{n+4}) , and *arachno* (AI_nH_{n+6}) that are analogues of boron hydrides has been done by K. Srinivasu et al.²¹

The doping of H-atom in a gold cluster can lead to a significant increase in its reactivity. The Hdoped gold cluster decreases the barrier height for the environmentally important CO oxidation reaction as compared to the pristine cluster.²²

Rhitankar Pal et al.²³ reported spectroscopic evidence of two modes of O₂ activation by the small even-sized Au_n clusters, superoxo and peroxo chemisorption. Their work shows that there is a superoxo to peroxo chemisorption transition of O₂ on gold clusters at Au₈, O₂Au_n (n = 2, 4, 6) involves superoxo binding and n = 10, 12, 14, 18 involves peroxo binding, whereas the superoxo binding reemerges at n = 20 due to the high symmetry tetrahedral structure of Au₂₀, which has a very low electron affinity.

Density functional theory study of the adsorption of nitrogen and sulfur atoms on gold (111), (100), and (211) surfaces has been reported by April D. Daigle and Joseph J. BelBruno.²⁴

H. M. Lu and X. K. Meng²⁵ proposed a theoretical model to calculate catalytic activation energies of platinum nanoparticles of Different sizes and shapes.

Recently, Naresh K. Jena et al.²⁶ reported Density functional theory (DFT) based study that investigates the possibilities of using complexes of DNA bases.

Following these initial reports of the reactivity of gold nanoparticles, the platform has been well set for the investigation of nanoscale gold catalysis leading to an upsurge of activities on structural

VOL-4* ISSUE-2* May- 2019 Remarking An Analisation

features, electronic properties of gold clusters, and their possible uses in nanocatalysis.²⁷⁻⁴⁹

Aim of the Study

The present work deals with the study of Au_8 clusters (neutral, cationic, anionic) and oxygen molecule separately and then interaction of oxygen molecule with Au_8 clusters (neutral, cationic, anionic) using different DFT functionals.

Computational details

We prepared the raw geometries of Au_8 clusters using Gabedit software and then optimized the geometries of neutral, cationic and anionic nanoclusters using computational chemistry package TURBOMOLE⁵⁰. Then added one oxygen molecule to the Au_8 cluster and optimized the whole structure again. We used a large number of initial positions for binding oxygen molecule to the cluster and observed several minima but considering here only those corresponding to the lowest energy.

The calculations are done by DFT-RI (def2-TZVP basis set) using three different functionals i.e. b-p, tpss and b3-lyp.

Results and discussion

Figure 1 represents the optimized geometries of Au_8O_2 , $Au_8O_2^+$, $Au_8O_2^-$ complexes. We have calculated the energy of Au_8O_2 , $Au_8O_2^+$, $Au_8O_2^-$ complexes considering O_2 as singlet and triplet. Figure 1: Optimized Geometries of Au_8O_2 Neutral,

Cationic and Anionic Complexes

It is evident from Table 1, 3 & 5 that, when functional b-p is used, Au₈-Anion is more stable by 67.8731 kcal/mol than its neutral counterpart while Au₈-Cation has least stability. Similarly, for b3lyp and tpss functionals, Au₈-Anion is more stable by 59.6943 kcal/mole & 61.1432 kcal/mole than Au₈-Neutral.

E: ISSN NO.: 2455-0817

Table 1: Ene	ergy calculated usin	g DFT-RI (def2-TZV	P basis set) and func	tional b-p
	Au ₈ -Neutral	Au ₈ -Cation	Au ₈ -Anion	O ₂ Molecule
	(singlet)	(doublet)	(doublet)	(triplet)
Energy (kcal/mol)	-682380.0028	-682200.9509	-682447.8759	-94383.17118
Table 2: F	Properties calculate	d using DFT-RI (def	2-TZVP basis set) and	d functional b-p
		Au ₈ O ₂ Neutral	$Au_8O_2^+$	Au ₈ O ₂
		(singlet)	(doublet)	(doublet)
	E (kcal/mol)	-776749.1058	-776592.3722	-776847.8833
singlet ovvgen	q _{O2}	0.322	0.173	0.478
	d _{o-o} (Å)	1.26989	1.23406	1.29257
	B.E. (kcal/mol)	14.06813872	-8.250145493	-16.83617469
		Au ₈ O ₂ Neutral	Au ₈ O ₂ ⁺	Au ₈ O ₂
		(triplet)	(quintet)	(quintet)
triplot oxygon	E (kcal/mol)	-776767.2493	-776588.8973	-776832.6573
tiplet oxygen	q _{O2}	0.132	0.180	0.242
	d _{o-o} (Å)	1.24258	1.22866	1.25381
	B.E. (kcal/mol)	-4.075332131	-4.775184622	-1.6102162
Table 3: I	Energy calculated u	sing DFT-RI (def2-T	ZVP basis set) and fu	Inctional b3-lyp
	Au ₈ -Neutral	Au ₈ -Cation	Au ₈ -Anion	Oxygen Molecule
	(singlet)	(doublet)	(doublet)	(triplet)
Energy (kcal/mol)	-681470.9492	-681294.1365	-681530.6435	-94333.4879
Table 2, 4 & 6 sho	ws various paramete	rs i.e. functio	nal at DFT level. Ch	arge on oxygen is fo
rgy, the charge on oxyg	en, Oxygen-Oxygen	t) for all functional. W		
ance and binding ener	gy of various comp	lexes O-O b	ond distance is found	to be 1.29257 Å, 1.2
ulated using def2-TZVI	P basis set and dif	ferent Å and	1.30 Å for b-p, b3lyp a	ind tpss respectively.
Table A. Dasses				
Table 4: Prope	rties calculated usin	ig DFT-RI (def2-TZV	P basis set) and fund	tional b3-lyp
Table 4: Prope	rties calculated usin	Au ₈ O ₂ Neutral	P basis set) and fund $Au_8O_2^+$	Au ₈ O2
Table 4: Prope	rties calculated usin	Au ₈ O ₂ Neutral (singlet)	P basis set) and func Au ₈ O ₂ ⁺ (doublet)	tional b3-lyp Au ₈ O ₂ (doublet)
	E (kcal/mol)	ag DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658	Au ₈ O ₂ (doublet) -775874.801
singlet oxygen	E (kcal/mol)	DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014	Au ₈ O ₂ (doublet) 3 -775874.801 -0.567
singlet oxygen	E (kcal/mol)	DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064	Au ₈ O ₂ ⁻ (doublet) 3 -775874.801 -0.567 1.2892
singlet oxygen	E (kcal/mol) <u>qo2</u> <u>d_{o-o} (Å)</u> B.E. (kcal/mol)	Ing DFT-RI (def2-TZV) Au ₈ O ₂ Neutral (singlet) -7755774.661 -0.255 1.2415 29.77610973	P basis set) and fund Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305
singlet oxygen	E (kcal/mol) q_{02} d_{0-0} (Å) B.E. (kcal/mol)	Ing DFT-RI (def2-TZV) Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral	P basis set) and fund Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂
singlet oxygen	E (kcal/mol) q_{O2} d_{o-o} (Å) B.E. (kcal/mol)	Ing DFT-RI (def2-TZV) Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet)	P basis set) and fund Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet)	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet)
singlet oxygen	E (kcal/mol) Go2 C(Å) B.E. (kcal/mol) E (kcal/mol)	Instruction Image Stress Image Stres Image Stress Image Stress <td>P basis set) and fund Au₈O₂⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au₈O₂⁺ (quintet) -775630.0641</td> <td>Au₈O₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au₈O₂⁻ (quintet) -775864.134</td>	P basis set) and fund Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134
singlet oxygen	E (kcal/mol) <u>qo2</u> <u>d₀₋₀ (Å)</u> B.E. (kcal/mol) <u>E</u> (kcal/mol) <u>qo2</u>	Aug Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>P basis set) and fund Au₈O₂⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au₈O₂⁺ (quintet) -775630.0641 0.022</td><td>Au₈O₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au₈O₂⁻ (quintet) -775864.134 -0.0005</td></thcontr<></thcontrol<></thcontrol<>	P basis set) and fund Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005
singlet oxygen	E (kcal/mol) q_{O2} d_{0-0} (Å) B.E. (kcal/mol) E (kcal/mol) q_{O2} d_{0-0} (Å)	Aug Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>P basis set) and funct Au₈O₂⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au₈O₂⁺ (quintet) -775630.0641 0.022 1.20532</td><td>Au₈O₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au₈O₂⁻ (quintet) -775864.134 -0.0005 1.20460</td></thcontr<></thcontrol<></thcontrol<>	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460
singlet oxygen	E (kcal/mol) q_{O2} d_{0-0} (Å) B.E. (kcal/mol) q_{O2} d_{0-0} (Å) B.E. (kcal/mol) q_{O2} d_{0-0} (Å) B.E. (kcal/mol)	Aug DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076
triplet oxygen	E (kcal/mol) <u>qo2</u> <u>do-o</u> (Å) B.E. (kcal/mol) <u>qo2</u> <u>do-o</u> (Å) B.E. (kcal/mol) <u>qo2</u> <u>do-o</u> (Å) B.E. (kcal/mol) Energy calculated	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-TZV)	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076
triplet oxygen	E (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Aua-Neutral	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1 Au ₈ -Cation	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ -Anion	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.0308076 Oxygen Molect
triplet oxygen	E (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) qo2 do-o (Å) E (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated (algorithm of the second	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1 Au ₈ -Cation (doublet)	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ -Anion (doublet)	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.0308076 Sunctional tpss Oxygen Molec (triplet)
triplet oxygen Table 5:	E (kcal/mol) qo2 do-o (Å) B.E. (kcal/mol) Go2 do-o (Å) B.E. (kcal/mol) Energy calculated (algorithm of the second	Instruction Image of the second state Image of the sec	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 (ZVP basis set) and f Au ₈ -Anion (doublet)	Au ₈ O ₂ (doublet) 3 -775874.8010 -0.567 1.2892 -10.67023050 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 3 -0.00308076 Unctional tpss Oxygen Molec (triplet) 66
triplet oxygen Table 5: Energy (kcal/mol) Table 6: P	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated of Au ₈ -Neutral (singlet) 0 -681450.5434 Properties calculated of Au ₈ -Neutral (singlet)	Instruct Image of the second state Image of the second	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and for (doublet) 76 -681511.686	Au ₈ O2 ⁻ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O2 ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076 Unctional tpss Oxygen Molec (triplet) 66 -94385.1980 I functional tpss
triplet oxygen Table 5: Energy (kcal/mol) Table 6: P	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated of Au ₈ -Neutral (singlet) 0 -681450.5432 Properties calculated	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) 4 -681278.97 4 Au ₈ O ₂ Neutral 4 -0.81278.97 4 Au ₈ O ₂ Neutral	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 (quintet) -775630.0641 0.022 1.20532 -2.439734093 rZVP basis set) and for Au ₈ -Anion (doublet) 76 -681511.686 -TZVP basis set) and Au ₈ O ₂ ⁺	Au ₈ O ₂ (doublet) 3 -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ (quintet) -775864.134 -0.0005 1.20460 3 -0.00308076 unctional tpss Oxygen Molec (triplet) 56 -94385.1980 I functional tpss Au ₈ O ₂
triplet oxygen Table 5: Energy (kcal/mol) Table 6: P	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated of Au ₈ -Neutral (singlet) 0 -681450.5432 Properties calculated of Calcul	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2 Au ₈ O ₂ Neutral (singlet)	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ -Anion (doublet) 76 -681511.686 Au ₈ O ₂ ⁺ (doublet)	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076 Unctional tpss Oxygen Molec (triplet) 6 -94385.1980 I functional tpss Au ₈ O ₂ ⁻ (doublet)
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P	E (kcal/mol) q ₀₂ d ₀₋₀ (Å) B.E. (kcal/mol) Energy calculated to Au ₈ -Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2 Au ₈ O ₂ Neutral (singlet) -775822.3857	P basis set) and funct Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) 76 -681511.686 -TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet)	Au ₈ O ₂ (doublet) -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076 Oxygen Molec (triplet) 6 -94385.1980 I functional tpss Au ₈ O ₂ ⁻ (doublet)
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated of Aug-Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol) Qo2	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2 Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) 76 -681511.686 -TZVP basis set) and Au ₈ O ₂ ⁺ (doublet) -775672.4477 -0.07	AugO2 ⁻ (doublet) -775874.801 -0.567 1.2892 -10.6702305 AugO2 ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076 Unctional tpss Oxygen Molect (triplet) 66 -94385.1980 I functional tpss AugO2 ⁻ (doublet) 775915.581 -0.50
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated to Aug-Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol) Qo2 do-o (Å)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2) Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34 1.27498	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) 76 -681511.686 - TZVP basis set) and Au ₈ O ₂ ⁺ (doublet) -775672.4477 -0.07 1.23564	AugO2 (doublet) -775874.801 -0.567 1.2892 -10.6702305 AugO2 (quintet) -775864.134 -0.0005 1.20460 -0.00308076 Unctional tpss Oxygen Molect (triplet) 6 -94385.1980 I functional tpss AugO2 ⁻ (doublet) 775915.581 -0.50
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Properties calculated of c	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2) Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34 1.27498	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) 76 -681511.686 - TZVP basis set) and Au ₈ O ₂ ⁺ (doublet) -775672.4477 -0.07 1.23564 -8.27197437	AugO2 (doublet) -775874.801 -0.567 1.2892 -10.6702305 AugO2 (quintet) -775864.134 -0.0005 1.20460 -0.00308076 Unctional tpss Oxygen Molect (triplet) 6 -94385.1980 Innctional tpss AugO2 ⁻ (doublet) 775915.581 -0.50 1.30
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated to Au8-Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Go2 do-o (Å) B.E. (kcal/mol)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-TA) 4u ₈ -Cation (doublet) 4-681278.97 J using DFT-RI (def2-TA) Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34 1.27498 13.35568112 Au ₈ O ₂ Neutral	P basis set) and func Au ₈ O ₂ * (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ * (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ * (doublet) 76 -681511.686 -T75672.4477 -0.07 1.23564 -8.27197437 Au ₈ O ₂ *	Au ₈ O ₂ (doublet) 3 -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ (quintet) -775864.134 -0.0005 1.20460 3 -0.00308076 functional tpss Oxygen Molec (triplet) 56 -94385.1980 I functional tpss Au ₈ O ₂ (doublet) 775915.581 -0.50 1.30 -18.6971713 Au ₈ O ₂
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated to Au8-Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Go2 do-o (Å) B.E. (kcal/mol)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1) Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2-1) Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34 1.27498 13.35568112 Au ₈ O ₂ Neutral (triplet)	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) 76 -681511.686 - TZVP basis set) and Au ₈ O ₂ ⁺ (doublet) -775672.4477 -0.07 1.23564 -8.27197437 Au ₈ O ₂ ⁺ (quintet)	Au ₈ O ₂ (doublet) 3 -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 3 -0.00308076 functional tpss Oxygen Molec (triplet) 56 -94385.1980 I functional tpss Au ₈ O ₂ ⁻ (doublet) 7.775915.581 -0.50 1.30 -18.6971713 Au ₈ O ₂ ⁻ (quintet)
Table 4: Proper singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated to Au8-Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) E (kcal/mol) E (kcal/mol) E (kcal/mol)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-TRI (def2-TRI (def2-TRI (def2))) 4 using DFT-RI (def2) 4 using DFT-RI (def2) 4 using DFT-RI (def2) 5 Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34 1.27498 13.35568112 Au ₈ O ₂ Neutral (triplet) -775840.175	P basis set) and func Au ₈ O ₂ * (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ * (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ * (doublet) 76 -681511.686 -T75672.4477 -0.07 1.23564 -8.27197437 Au ₈ O ₂ * (quintet)	AugO2 (doublet) 3 -775874.801 -0.567 1.2892 -10.6702305 AugO2 (quintet) -775864.134 -0.0005 1.20460 3 -0.00308076 functional tpss Oxygen Molec (triplet) 56 -94385.1980 I functional tpss AugO2 (doublet) 7.775915.581 -0.50 1.30 -18.6971713 AugO2 (quintet)
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen triplet oxygen	E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Energy calculated to Au8-Neutral (singlet) 0 -681450.5434 Properties calculated E (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Qo2 do-o (Å) B.E. (kcal/mol) Qo2 do-o (Å)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-TRI (def2-TRI (def2-TRI (def2))) 4 using DFT-RI (def2) -775822.3857 -0.34 1.27498 13.35568112 Au ₈ O ₂ Neutral (triplet) -775840.175 -0.153	P basis set) and func Au ₈ O ₂ * (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ * (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ * (doublet) 76 -681511.686 -T75672.4477 -0.07 1.23564 -8.27197437 Au ₈ O ₂ * (quintet) -775669.1285 -0.02	Au ₈ O ₂ (doublet) 3 -775874.801 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 3 -0.00308076 unctional tpss Oxygen Molec (triplet) 56 -94385.1980 I functional tpss Au ₈ O ₂ ⁻ (doublet) 7775915.5811 -0.50 1.30 -18.6971713 Au ₈ O ₂ ⁻ (quintet)
Table 4: Prope singlet oxygen triplet oxygen Table 5: Energy (kcal/mol) Table 6: P singlet oxygen triplet oxygen	E (kcal/mol) q_{02} d_{0-0} (Å) B.E. (kcal/mol) Energy calculated (Au_8-Neutral (singlet) 0 -681450.5432 Properties calculated E (kcal/mol) q_{02} d_{0-0} (Å) B.E. (kcal/mol) q_{02} d_{0-0} (Å) B.E. (kcal/mol) q_{02} d_{0-0} (Å)	Ing DFT-RI (def2-TZV Au ₈ O ₂ Neutral (singlet) -775774.661 -0.255 1.2415 29.77610973 Au ₈ O ₂ Neutral (triplet) -775805.099 -0.002 1.20617 -0.661929865 using DFT-RI (def2-1 Au ₈ -Cation (doublet) 4 -681278.97 J using DFT-RI (def2-1) Au ₈ O ₂ Neutral (singlet) -775822.3857 -0.34 1.27498 13.35568112 Au ₈ O ₂ Neutral (triplet) -775840.175 -0.153 1.24452	P basis set) and func Au ₈ O ₂ ⁺ (doublet) -775631.0658 0.014 1.2064 -3.441401951 Au ₈ O ₂ ⁺ (quintet) -775630.0641 0.022 1.20532 -2.439734093 TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) 76 -681511.686 - TZVP basis set) and f Au ₈ O ₂ ⁺ (doublet) -775672.4477 -0.07 1.23564 -8.27197437 Au ₈ O ₂ ⁺ (quintet) -775669.1285 -0.02	Etional b3-lyp Au ₈ O ₂ ⁻ (doublet) 3 -775874.801 3 -775874.801 3 -775874.801 3 -0.567 1.2892 -10.6702305 Au ₈ O ₂ ⁻ (quintet) -10.6702305 Au ₈ O ₂ ⁻ (quintet) -775864.134 -0.0005 1.20460 -0.00308076 functional tpss Oxygen Molec (triplet) 06 -94385.1980 I functional tpss Au ₈ O ₂ ⁻ (doublet) 7 -775915.5813 -0.50 1.30 -18.6971713 Au ₈ O ₂ ⁻ (quintet) 9 -775899.3443 -0.293 1.26095

E: ISSN NO.: 2455-0817

VOL-4* ISSUE-2* May- 2019 Remarking An Analisation

Table 7. Companson of binding Energies nom table 2							
Species	No. of	B.E. (kcal/mol)	B.E. (kcal/mol)	B.E. (kcal/mol)			
	unpaired	by functional	by functional b3-lyp	by functional tpss			
	electrons	b-p					
Au ₈ O ₂ (doublet)	1	-16.83617469	-10.67023055	-18.69717137			
$Au_8O_2^+$ (doublet)	1	-8.250145493	-3.441401951	-8.27197437			
Au ₈ O ₂ ⁺ (quintet)	3	-4.775184622	-2.439734093	-4.953225838			
Au ₈ O ₂ (triplet)	2	-4.075332131	-0.661929865	-4.433554686			
Au ₈ O ₂ (quintet)	3	-1.6102162	-0.00308076	-2.460176298			
Au ₈ O ₂ (singlet)	0	14.06813872	29.77610973	13.35568112			
Table 7 represents the communication of Advanced Operation Dura and UDO ULAO N							

Table 7: Comparison of Binding Energies from table 2

Table 7 represents the comparison of binding energies of various species. It is evident from the table that Au_8O_2 anionic complex having one unpaired electron is showing about 30 kcal/mole (b-p functional) more favorable binding with Oxygen molecule than neutral species having no unpaired electron. Similar results are also reported by the calculations based on b3lyp (about 40 kcal/mole) and tpss (about 32 kcal/mole) functional.

Table 8 shows the calculated frequencies for O-O bond, which is least 1180.94 cm⁻¹ for the $Au_8O_2^-$ (doublet) complex calculated using b-p functional while it is 1156.85 cm⁻¹ and 1153.29 cm⁻¹ for b3-lyp and tpss respectively.

Table 8: Frequency calculations with different DFT functionals

DFT func.	Au ₈ O ₂	Au ₈ O ₂ ⁺	Au ₈ O ₂
	(triplet)	(doublet)	(doublet)
<i>v</i> _{o-o} (cm ⁻¹) b-p	1368.44	1383.67	1180.94
<i>v_{o-o}</i> (cm ⁻¹) b3-	1604.51	1578.91	1156.85
lyp			
<i>v</i> _{o-o} (cm ⁻¹)	1353.91	1376.88	1153.29
tpss			

Conclusion

From the above results, it is evident that the formation of Au₈O₂, anionic complex having one unpaired electron is more favorable as compared to its cationic or neutral counterparts. Similarly, Au₈O₂, neutral complex having no unpaired electron is least stable as compared to others. The O-O bond length is found to be maximum (1.30 Å) in Au₈O₂, anionic complex having one unpaired electron using tpss functional, which suggests that there is maximum charge transfer to O₂ in this case. If electron transfer accompanies the binding of O2 to the Au cluster, the bond of the adsorbed O₂ will be longer than that of gaseous O₂. The experimental value of O₂ bond length is 1.207 Å 51 . So we assume that the more extensive the electron transfers to O₂, the longer the O-O bond of the adsorbed molecule. Furthermore, frequency calculations of O-O bond show that it is least for Au₈O₂, anionic complex having one unpaired electron. It means that there is effective activation of oxygen and thus Au₈O₂, anionic complex having one unpaired electron can be very useful in nanocatalysis of CO oxidation reaction. The results seem to act as a motivation for further theoretical and experimental studies.

Acknowledgment

The authors gratefully acknowledge the generous support provided by Dr. K.R.S. Chandrakumar, Bhabha Atomic Research Centre, Mumbai. We are thankful to National PARAM Supercomputing Facility, Centre for Development of Advanced Computing, Pune and HPC-IUAC, New Delhi for providing computational facilities.

End Notes

- Haruta, Masatake et al. "Novel Gold Catalysts For The Oxidation Of Carbon Monoxide At A Temperature Far Below 0 °C". Chemistry Letters, vol 16, no. 2, 1987, pp. 405-408.
- Haruta, Masatake. "Size- And Support-Dependency In The Catalysis Of Gold". Catalysis Today, vol 36, no. 1, 1997, pp. 153-166.
- Sinha, A.K. et al. "Catalysis By Gold Nanoparticles: Epoxidation Of Propene". Topics In Catalysis, vol 29, no. 3/4, 2004, pp. 95-102.
- Nijhuis, T. Alexander et al. "Mechanistic Study Into The Direct Epoxidation Of Propene Over Gold/Titania Catalysts". The Journal Of Physical Chemistry B, vol 109, no. 41, 2005, pp. 19309-19319.
- Tsunoyama, Hironori et al. "Colloidal Gold Nanoparticles As Catalyst For Carbon–Carbon Bond Formation: Application To Aerobic Homocoupling Of Phenylboronic Acid In Water". Langmuir, vol 20, no. 26, 2004, pp. 11293-11296.
- Bond, Geoffrey. "Mechanisms Of The Gold-Catalysed Water-Gas Shift". Gold Bulletin, vol 42, no. 4, 2009, pp. 337-342.
- Juliusa, Melissa et al. "A Review Of The Use Of Gold Catalysts In Selective Hydrogenation Reactions Lynsey Mcewana". Gold Bulletin, vol 43, no. 4, 2010, pp. 298-306.
- Salisbury, B.E et al. "Low-Temperature Activation Of Molecular Oxygen By Gold Clusters: A Stoichiometric Process Correlated To Electron Affinity". Chemical Physics, vol 262, no. 1, 2000, pp. 131-141.
- Chandrakumar, K. R. S. et al. "Relationship Between Ionization Potential, Polarizability, And Softness: A Case Study Of Lithium And Sodium Metal Clusters". The Journal Of Physical Chemistry A, vol 108, no. 32, 2004, pp. 6661-6666.
- Chandrakumar, K. R. S. et al. "Static Dipole Polarizability And Binding Energy Of Sodium Clusters Nan (N=1–10): A Critical Assessment Of All-Electron Based Post Hartree–Fock And Density Functional Methods". The Journal Of Chemical Physics, vol 120, no. 14, 2004, pp. 6487-6494.
- Dissanayake, Dhammike P., and Jack H. Lunsford. "Evidence For The Role Of Colloidal Palladium In The Catalytic Formation Of H2O2 From H2 And O2". Journal Of Catalysis, vol 206, no. 2, 2002, pp. 173-176.

P: ISSN NO.: 2394-0344

VOL-4* ISSUE-2* May- 2019 Remarking An Analisation

E: ISSN NO.: 2455-0817

- Choudhary, Vasant R. et al. "Formation From Direct Oxidation Of H2 And Destruction By Decomposition/Hydrogenation Of H2O2 Over Pd/C Catalyst In Aqueous Medium Containing Different Acids And Halide Anions". Applied Catalysis A: General, vol 317, no. 2, 2007, pp. 234-243.
- 13. Zhou, B.; Lee, L. K. U.S. Patent 6,168, 2001, pp. 775.
- Olivera, P.Paredes et al. "Hydrogen Peroxide Synthesis Over Metallic Catalysts". Surface Science, vol 313, no. 1-2, 1994, pp. 25-40.
 Landon, Philip et al. "Direct Formation Of
- Landon, Philip et al. "Direct Formation Of Hydrogen Peroxide From H2/O2 Using A Gold Catalyst". Chemical Communications, no. 18, 2002, pp. 2058-2059.
- Okumura, Mitsutaka et al. "Direct Production Of Hydrogen Peroxide From H2and O2over Highly Dispersed Au Catalysts". Chemistry Letters, vol 32, no. 9, 2003, pp. 822-823.
- Wang, Fang et al. "Theoretical Investigation Of The Formation Of Hydrogen Peroxide From H2and O2over Anionic Gold Clusters Aun-(N= 1-4)". The Journal Of Physical Chemistry C, vol 111, no. 31, 2007, pp. 11590-11597.
- Liao, Meng-Sheng et al. "Structure, Bonding, And Linear Optical Properties Of A Series Of Silver And Gold Nanorod Clusters: DFT/TDDFT Studies". The Journal Of Physical Chemistry A, vol 114, no. 48, 2010, pp. 12701-12708.
- Mills, Greg et al. "The Adsorption Of Molecular Oxygen On Neutral And Negative Aun Clusters (N=2-5)". Chemical Physics Letters, vol 359, no. 5-6, 2002, pp. 493-499.
- Jena, Naresh K. et al. "Theoretical Investigation On The Structure And Electronic Properties Of Hydrogen- And Alkali-Metal-Doped Gold Clusters And Their Interaction With CO: Enhanced Reactivity Of Hydrogen-Doped Gold Clusters". The Journal Of Physical Chemistry C, vol 113, no. 41, 2009, pp. 17885-17892.
- Srinivasu, K. et al. "Ab Initio Studies On The Electronic Structure And Properties Of Aluminum Hydrides That Are Analogues Of Boron Hydrides". The Journal Of Physical Chemistry A, vol 114, no. 46, 2010, pp. 12244-12250.
- 22. Jena, Naresh K. et al. "Beyond The Gold– Hydrogen Analogy: Doping Gold Cluster With H-Atom–O2 Activation And Reduction Of The Reaction Barrier For CO Oxidation". The Journal Of Physical Chemistry Letters, vol 2, no. 12, 2011, pp. 1476-1480.
- 23. Pal, Rhitankar et al. "Unraveling The Mechanisms Of O2 Activation By Size-Selected Gold Clusters: Transition From Superoxo To Peroxo Chemisorption". Journal Of The American Chemical Society, vol 134, no. 22, 2012, pp. 9438-9445.
- Daigle, April D., and Joseph J. BelBruno. "Density Functional Theory Study Of The Adsorption Of Nitrogen And Sulfur Atoms On Gold (111), (100), And (211) Surfaces". The Journal Of Physical Chemistry C, vol 115, no. 46, 2011, pp. 22987-22997.

- Lu, H. M., and X. K. Meng. "Theoretical Model To Calculate Catalytic Activation Energies Of Platinum Nanoparticles Of Different Sizes And Shapes". The Journal Of Physical Chemistry C, vol 114, no. 3, 2010, pp. 1534-1538.
- Jena, Naresh K. et al. "DNA Base–Gold Nanocluster Complex As A Potential Catalyzing Agent: An Attractive Route For CO Oxidation Process". The Journal Of Physical Chemistry C, vol 116, no. 32, 2012, pp. 17063-17069.
- Haruta, Masatake et al. "Novel Gold Catalysts For The Oxidation Of Carbon Monoxide At A Temperature Far Below 0 °C". Chemistry Letters, vol 16, no. 2, 1987, pp. 405-408.
- HARUTA, M. "Gold Catalysts Prepared By Coprecipitation For Low-Temperature Oxidation Of Hydrogen And Of Carbon Monoxide". Journal Of Catalysis, vol 115, no. 2, 1989, pp. 301-309.
- Seminario, Jorge M., and James M. Tour. "Systematic Study Of The Lowest Energy States Of Aun (N=1–4) Using DFT". International Journal Of Quantum Chemistry, vol 65, no. 5, 1997, pp. 749-758.
- Valden, M. "Onset Of Catalytic Activity Of Gold Clusters On Titania With The Appearance Of Nonmetallic Properties". Science, vol 281, no. 5383, 1998, pp. 1647-1650.
- Hayashi, Toshio et al. "Selective Vapor-Phase Epoxidation Of Propylene Over Au/Tio2catalysts In The Presence Of Oxygen And Hydrogen". Journal Of Catalysis, vol 178, no. 2, 1998, pp. 566-575.
- Häkkinen, Hannu, and Uzi Landman. "Gold Clusters(Aun,2<~N<~10)And Their Anions". Physical Review B, vol 62, no. 4, 2000, pp. R2287-R2290.
- Grönbeck, Henrik, and Wanda Andreoni. "Gold And Platinum Microclusters And Their Anions: Comparison Of Structural And Electronic Properties". Chemical Physics, vol 262, no. 1, 2000, pp. 1-14.
- Haruta, Masatake. "Gold As A Novel Catalyst In The 21St Century: Preparation, Working Mechanism And Applications". Gold Bulletin, vol 37, no. 1-2, 2004, pp. 27-36.
 Meyer, R. et al. "Surface Chemistry Of Catalysis
- Meyer, R. et al. "Surface Chemistry Of Catalysis By Gold". Gold Bulletin, vol 37, no. 1-2, 2004, pp. 72-124.
- Thompson, David T. "An Overview Of Gold-Catalysed Oxidation Processes". Topics In Catalysis, vol 38, no. 4, 2006, pp. 231-240.
- Herzing, A. A. et al. "Identification Of Active Gold Nanoclusters On Iron Oxide Supports For CO Oxidation". Science, vol 321, no. 5894, 2008, pp. 1331-1335.
- Lee, Sungsik et al. "Selective Propene Epoxidation On Immobilized Au6-10Clusters: The Effect Of Hydrogen And Water On Activity And Selectivity". Angewandte Chemie International Edition, vol 48, no. 8, 2009, pp. 1467-1471.
- 39. Pyykkö, Pekka. "Theoretical Chemistry Of Gold". Angewandte Chemie International Edition, vol 43, no. 34, 2004, pp. 4412-4456.

P: ISSN NO.: 2394-0344

E: ISSN NO.: 2455-0817

- Kim, Young Dok. "Chemical Properties Of Mass-Selected Coinage Metal Cluster Anions: Towards Obtaining Molecular-Level Understanding Of Nanocatalysis". International Journal Of Mass Spectrometry, vol 238, no. 1, 2004, pp. 17-31.
- An, Hyesung et al. "Reactive Structural Motifs Of Au Nanoclusters For Oxygen Activation And Subsequent CO Oxidation". The Journal Of Physical Chemistry C, vol 120, no. 17, 2016, pp. 9292-9298.
- Eren, B. et al. "Activation Of Cu(111) Surface By Decomposition Into Nanoclusters Driven By CO Adsorption". Science, vol 351, no. 6272, 2016, pp. 475-478.
- 43. Jiménez-Díaz, Laura M., and Luis A. Pérez. "Molecular Oxygen Adsorption And Dissociation On Au12m Clusters With M = Cu, Ag Or Ir". The European Physical Journal D, vol 72, no. 3, 2018.
- 44. Liu, Jin-Cheng et al. "Toward Rational Design Of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion Of Gold On Ceria". Journal Of The American Chemical Society, vol 139, no. 17, 2017, pp. 6190-6199.

- Liu, Jin-Xun et al. "CO Oxidation On Rh-Doped Hexadecagold Clusters". Catalysis Science & Technology, vol 7, no. 1, 2017, pp. 75-83.
- Liu, Jin-Xun et al. "Optimum Particle Size For Gold-Catalyzed CO Oxidation". The Journal Of Physical Chemistry C, vol 122, no. 15, 2018, pp. 8327-8340.
- 47. Ma, Xianfeng, and Hongliang Xin. "Orbitalwise Coordination Number For Predicting Adsorption Properties Of Metal Nanocatalysts". Physical Review Letters, vol 118, no. 3, 2017.
- Wang, Yang-Gang et al. "Dynamic Formation Of Single-Atom Catalytic Active Sites On Ceria-Supported Gold Nanoparticles". Nature Communications, vol 6, no. 1, 2015.
- 49. Zhang, Wenhua et al. "Theoretical Investigation Of Gold Based Model Catalysts". Science China Chemistry, vol 58, no. 4, 2015, pp. 565-573.
- 50. Ahlrichs, Reinhart et al. "Electronic Structure Calculations On Workstation Computers: The Program System Turbomole". Chemical Physics Letters, vol 162, no. 3, 1989, pp. 165-169.
- 51. Herzberg, Gerhard, and Klaus-Peter Huber. Molecular Spectra And Molecular Structure. Van Nostrand Reinhold, 1979.